Adding Semantics to Business Intelligence

Denilson Sell¹², Liliana Cabral², Enrico Motta², John Domingue² and Roberto Pacheco¹³

¹Stela Group, Universidade Federal de Santa Catarina, Brazil
²Knowledge Media Institute, The Open University, Milton Keynes, UK
³INE, Universidade Federal de Santa Catarina, Brazil
{denilson, pacheco}@stela.ufsc.br, {l.s.cabral, e.motta, j.b.domingue}@open.ac.uk

Abstract

Despite the importance of analytical tools to organisations, they still lack the inference power needed to solve the requests of decision makers in a flexible way. Our approach aims at integrating business semantics into analytical tools by providing semantic descriptions of exploratory functionalities and available services. We propose an architecture for business intelligence, which uses semantic web technology based on IRS-III. In addition, we present OntoDSS, a prototype tool based on this architecture that illustrates some of the functionalities that may be provided to decision makers within an application scenario.

1 Introduction

Fierce competition in the digital economy and increasing volume of available data are forcing organisations to find efficient ways of obtaining valuable information and knowledge to improve the efficiency of their business processes. Business Intelligence (BI) solutions offer the means to transform data into information and derive knowledge through analytical tools in order to support decision making.

Analytical tools should support decision makers to find the right information quickly and enable them to make well-informed decisions. Most of these tools, however, come with a limited set of exploratory functionalities such as drill-down, drill-up, slice and dice, which operate over data sources only at the structural level. Some of these tools allow users to extend those functionalities but in non-scalable ways such as through specific programming languages that may not be known by the developers of the organization.

By applying semantic web technology to analytical tools we expect to tackle some of the main issues:

- Lack of flexibility for extension of the exploratory capabilities.
- No support for flexible representation of business rules in order to get pro-active information and advices during decision making.

We have developed an architecture in which conceptualizations for business analysis can be captured, represented and processed in order to offer the decision maker more tailored and flexible exploratory functionalities. Ontologies and Semantic Web Services based on IRS-III [3] are applied to support the semantic extension of the information structure used by BI analytical tools. In addition, we present OntoDSS, a prototype tool based on this architecture that illustrates functionalities such as semantic filters and services that may be provided to decision makers within an application scenario.

The rest of the paper is organized as follows. In section 2, we present a brief introduction to business intelligence and analytical tools. Section 3 presents the semantic web technology applied. Section 4 presents an architecture for semantic based analytical tools. Section 5 presents a prototype tool implemented using this architecture. Finally, in section 6, we discuss the work done and present conclusions.

2 Business Intelligence and Analytical tools

Business Intelligence (BI) is defined as an integrated set of tools to support the transformation of data into information in order to support decision making. However, organizations are expecting a broader use of BI which also includes the ability to analyse information in the context of individual needs and the use of knowledge management technologies to speed up the process of making knowledgeable decisions.
A typical BI architecture contains a Data Warehouse (DW), an Extraction, Transformation and Loading tool (ETL) and a set of analytical tools. DW is an integrated repository of data consolidated from different data sources through ETL tools. Usually, the approach used for data modeling in DW is the star schema \[1\], which defines that descriptions of the business (e.g. product description) are stored in dimensions, while the measures (e.g. amount of items sold) are kept in fact tables. DW supplies the data that is presented to the user through analytical tools. Different kinds of analytical tools such as On-Line Analytical Processing (OLAP) are used to provide the means for users to define their analyses (i.e. reports or cubes) and explore the results through analytical functionalities \[1\].

3 Semantic Web and Semantic Web Services

The main objective of the Semantic Web is to enable the description of Web contents in such a way that it will be possible for programs to locate and reason over Web resources. Ontologies are one of the main artifacts used to leverage the current Web to the Semantic Web. Another key technology used in our approach is Semantic Web Services (SWS) \[2\], which enable the semantic interoperability of distributed services over data (XML) and protocol (SOAP) standards. The semantic description of Web Service functionalities facilitates activities such as automatic discovery and composition of Web Services.

In our approach we use IRS-III \[3\], a framework and implemented infrastructure for developing Semantic Web Services compliant with WSMO \[7\]. The main meta-models of WSMO are Ontologies, Goals, Web Services and Mediators. Ontologies provide the basic glue for semantic interoperability. Goals represent the types of objectives that users would like to achieve via Web services. Web services descriptions describe the functional behavior of an actual Web service. Mediators provide the means to link two components together, defining mappings between them. In IRS-III a published Web service may be selected during a selection process and then invoked for achieving a goal.

4 An Architecture for Analytical Tools

We present the architecture we have developed for building semantic-based analytical tools. The architecture is composed of a set of loosely-coupled modules that are illustrated in Figure 1. We first describe how the functional modules handle the integrated knowledge models.

![Figure 1. Illustration of the OntoDSS modules.](image)

4.1 Semantic Infrastructure

In our approach, we use ontologies to capture business semantics and to define the necessary knowledge models for generating flexible exploratory functionalities in analytical tools. More specifically, we use OCML \[4\] for creating the business intelligence (BI) model, the service models and the application domain models. We are then able to define semantic functionalities including filters, relation navigation and Semantic Web Services.

The BI domain ontology models the main concepts related to business intelligence as described in section 2. This representation takes advantage of the structure of data sources in terms of dimensions and facts in the DW. An analysis formatted by a user is defined in this ontology as shown in listing 1. This definition includes dimensions, measures, filters, privileges and parameters. Parameters are used to bind values in a filter definition. Like dimensions and measures, parameters are instantiated with domain concepts defined in the Domain Ontology. Thus, the analysis concept can be used in any business domain.

Listing 1. Partial OCML definition of the classes used in the Analysis definition.

```ocml
(def-class Analysis ()
  (has_description :type string)
  (has_measures   :type Analysis_Measure)
  (has_dimension :type Analysis_Dimension)
  (has_filter    :type Analysis_Filter)
  (has_parameter :type Analysis_Parameter)
  (has_creator   :type User)
  (has_allowed_user   :type User)
  (has_allowed_role   :type Role)))

(def-class Analysis_Filter ()
  (has_attribute :type DB_Attribute)
  (has_operator :type DB_Operation)
)"
Several supporting classes in the BI ontology are used to associate attributes in dimensions and facts with concepts in the Domain Ontology. Moreover, these definitions are used for extending query results by a process of query rewriting. Some of these classes are shown in Listing 2.

Listing 2. Partial definition of classes used to map data sources and domain concepts.

(def-class DB_Collection (DB_Element) ((has_pk_attribute :type DB_Attribute) (has_attribute :type DB_Attribute) (has_collection_name :type string)))

(def-class DB_Attribute (Element) ((has_concept :type Class) (has_slot :type Slot) (is_summarized_by :type Summarization) (is_additive :type boolean) (has_presentation_format :type string) (has_attribute_name :type string)))

Additional definitions are used to support analysis presentation according to the user profile. The label-role relation described in the Listing 3 is used to infer the description for a DB Attribute from a Label class according to the user role.

Listing 3. OCML definition of label-role relation.

(def-relation label-role (?class ?role ?label) :sufficient (and (has_label_name ?att ?class) (has_label_db_element ?db ?att) (has_label_user_role ?db ?role) (has_label_description ?db ?label)))

Domain Ontologies model specific business concepts that can be bound to the BI ontology as values. Likewise, these ontologies provide the business terminology that will support the description of the SWS in the Services Ontology.

From the user point of view these concepts relate to the analysis they are applying in a specific scenario. For example, a Domain Ontology for the R&D domain includes concepts such as university, researcher, and so on. Application-specific relations and rules can be defined for supporting filter definitions and extension of query results. Listing 4 defines for example the rival-institution relation, which states that universities are rivals if they are located in the same city.

Listing 4. The rival institution relation.

(def-relation rival-institution (?i1 ?i2) :sufficient (and (city ?c) (has_address ?i1 ?a1) (has_city ?a1 ?c) (has_address ?i2 ?a2) (not (= ?i1 ?i2))))

Service Ontologies contain Semantic Web Service definitions. Currently, these correspond to instances of goal, web service and mediator models used in the IRS-III framework. The Domain Ontology supplies the business concepts used to describe goals and web service capabilities (e.g. inputs, outputs, preconditions etc). A SWS can be used to create built-in query definitions as well as composed services. Listing 5 shows de description of a SWS in IRS-III in terms of goal, web service and mediator. This service finds all researchers belonging to a research group. Researchers are identified by their CV description.

Listing 5. Partial definition of a SWS in IRS-III.

(def-class list-researchers-goal (goal) ?goal (has-input-role:value has-research-group) (has-output-role:value has-list-cv) (has-research-group:type research_group) (has-list-cv:type cv))

(def-class list-researchers-web-service (web-service) ?web-service (has-capability:value list-res-web-service-capability) (has-interface:value list-res-web-service-interface) (has-non-functional-properties:value list-res-web-service-non-func-props))

(def-class list-researcher-mediator (wg-mediator) ?mediator (has-source-component:value list-researchers-goal) (has-target-component:value list-researcher-web-service))

4.2 Functional Modules

The Instance Manager supports the replication of data from the dimensions into the Domain Ontology. The Instance Manager is guided by the mappings described in the BI Ontology and by information about updating periodicity also described in the BI Ontology. The module is implemented as a collection of Java classes that connect to the desired data source through JDBC drivers and automatically extract the data needed and generate the instances (currently in OCML) in the ontology server.

The Ontologies Manager is the module that provides a set of methods necessary to query and make inferences over the ontology repositories. This module was conceived to hide the complexities of the ontology query languages and ontology repositories from developers. It enables a loose integration among analytical tools, query engine and ontology repositories resulting in more flexibility for changes in the underlying repositories and query engine.
The goal of the Service Manager is to enable the re-use of existing code to support the improvement of analytical tools functionalities. It supports automatic recommendation of SWS according to the match of the concepts involved in an analysis and the semantic descriptions of Web Services. SWS can be a powerful mechanism for analytical tools because it allows access to external and distributed services or data sources that can be integrated to an analysis.

The Analysis Manager is the module that provides access to all the components in our architecture. It intermediates the access to the Ontology Manager, to the Service Manager and to the Instance Manager. Also, it provides a set of functionalities to support OLAP over data sources and implements the query rewrite process described previously.

## 5 A Prototype Analytical Tool

In this section, we present OntoDSS, a prototype tool based on our architecture in order to illustrate some of the functionalities provided by a semantic web based analytical tool.

By using OntoDSS, users browse the semantic definitions of their data sources in order to select the data items that they want to include in their analysis.

Besides the traditional OLAP functionalities, OntoDSS provides a set of exploratory functionalities relying on the semantic descriptions defined in our architecture repositories. Fig. 2 illustrates the results of an analysis defined by the user in OntoDSS in a specific business scenario. This application scenario includes information about universities and the correspondent number of students and researchers. Users can right-click over any of the columns in the analysis and see what explorations are recommended by the tool. OntoDSS automatically identifies which concepts were used in the analysis definition and use these concepts to recommend explorations to the user.

In the Services option, OntoDSS lists all the SWS that have at least one input type compatible with the type of the selected instance, in this example, to the university concept. This match is also supported by the subsumption relation of the concepts defined in the Domain Ontology. The user can select one or more instances of university to be given as input to the SWS recommended by the user. The result of the invocation of the selected SWS is presented to the user and can be used as a parameter to another analysis. Analyses that have parameters compatible with the output of the SWS selected are also recommended to the user.

Users can also use Semantic Filters to make further explorations over one or more universities included in the report. As illustrated in the Fig. 2, the first filter presented in the list was institution-rival. The list of universities that holds for this filter expression is presented in another dialog. The user can then look the details of each instance retrieved and ask to compare such universities clicking on the Rewrite Analysis button, which reformulates the original query in order to present just the universities retrieved in the inference.

The Relation option allows users to navigate the Domain Ontology. They can analyze, for instance, the researchers and students that have a link to the university selected. Another option to the user is to get a list of all the analyses that have at least one parameter that matches, in this example, the term university. This feature enables the user to continue the exploration by opening an analysis previously defined. Therefore, the decision maker can have different insights over the object being analyzed by just navigating from one analysis to another. The recommendation of analysis is made by matching terms used in the parameters of other analysis. Finally, users can rely on the Discover Goal and Compose options to find or compose SWS in order to bring additional data to the analysis or perform any other transaction using the selected university as an input parameter.

## 6 Discussion and Conclusions

We argue that business semantics should be applied as the backbone for contextualization and integration of data and services into analytical tools.
Some systems are applying ontologies to describe the organization of data sources in order to support data integration and queries [5] [6]. However, since in these systems the data is not replicated as instances to form a knowledge base, inference requires highly customized engines. On the other hand, by replicating all the data as instances into the ontology, one can easily apply generic inference engines to explore the semantic representation. However, it is complex and expensive to maintain such replication. Therefore, in our approach, although we process queries over the data sources, we use the semantic infrastructure to extend the results of a query and to support inferences over the results of the queries. The performance of the queries is not affected, because inferences are made over a result set but queries are still processed in traditional databases.

We verified that most of the data that could be useful to support inferences and query rewrite are stored in the dimensions of a DW. Dimensions are typically small tables that are not object of constant updating [1]. Thus, we generate instances in the Domain Ontology using the data stored in the dimensions.

Our approach to support query rewrite is similar to the one presented in [6], but we apply more extensively the business semantics described in the Domain Ontology to support the rewrite of query conditions and to combine OLAP features in this process. The rewrite process is guided by the users of analytical tools, who choose which semantic filter will be applied to extend the results of their queries. For instance, the user could be interested in finding products that are related to the same category of one particular product listed in the result of an analysis. In this example, it is assumed that this categorization is not described in the DW but expressed as a relation in the Domain Ontology.

Relations also support the generation of exploratory operations over the results of an analysis without necessarily relying on the relationships between dimensions and fact tables. One can define a relation such as “product is supplied by company” and use this relation to analyse the prices offered by different suppliers, or the volume of sales by supplier.

Current analytical tools do not offer scalable ways for the generation or extension of functionalities. Frequently, users have to develop the required extension from the scratch, even when there is code already implemented that could be used. We offer a scalable solution for this issue in our architecture through Semantic Web Services and ontologies. Existing code found in the organization or on the Web can be semantically described and easily integrated to analytical tools through our architecture. Such semantic description supports the discovery, composition and invocation of services related to the users’ analysis. In addition, definitions of business concepts and logic are done directly in the Domain Ontology, so one can modify or include definitions and change the behavior of analytical tools at any time. Therefore, modifications no longer depend on hours of coding, and maintenance of the system can be done remotely.

As illustrated in our prototype, users receive suggestions of relevant filters, relations and services that can present different perspectives of an analysis. The recommendation is made automatically according to business concepts being explored in an analysis.

Acknowledgement

This work is supported by CNPq, Brazil and by DIP (Data, Information and Process Integration with Semantic Web Services) project (EU FP6 - 507483).

References