Towards a reconciliation of ChOrch in IRS, Configurator and WSMO

Barry Norton
DIP Follow-On Meeting
2005-10-10
Input

• Considers following work:
 – **IRS**
 • Choreography engine based on ASMs
 • Orchestration engine based on partial OWL-S
 – **Configurator**
 • Partial UML2AD workflow as choreography
 • UML2AD composes these to make orchestrations
 – **Cashew**
 • IO automata as choreographies
 • OWL-S as orchestration (visualised in UML2AD), composes these, engine in Haskell via process algebraic semantics…
 – **WSMO**
 • ASMs are everything (somehow…)
IRS View of ChOrch

Client invokes

presents

Goal

met by

Orchestration of Goals

IRS-III brokers

Deployed Service

conforms to

Client Choreography

Service Choreography
Views on IRS

- Client choreography (currently an ASM) can be viewed as partial workflow
- Composition by orchestration of goals can be compared to workflow composition
- Answers Cashew criticism that
 - OWL-S
 - tackles only ‘operation composition’
 (since it combines operations to make ‘scripts’ over a service that are atomic workflow tasks)
 - ignores challenges of (service) choreography
 (since it encapsulates dependencies between operations)
 - Configurator
 - considers only one (client’s intention) interaction
 claim: partial workflows can be viewed as client choreographies
Requirements

• Need to achieve:
 – Reconciliation of viewpoints (IRS reference implementation, Configurator work, WSMO) on paper;
 – Demonstrator that convincingly executes an example illustrating this, i.e.
 • import from Configurator to IRS-III
 • orchestration engine in IRS-III (and interface with choreography engine)
 • export as ASMs
 • orchestration engine in WSMX
Proposal

• Build an ontology fragment:
 – representing workflow patterns;
 – structured as per OWL-S (process model);
 – adapted to capture UML idioms.

• Represent in this language:
 – orchestration of goals (goals as tasks);
 – client choreographies (operations of deployed service as tasks - restricted fragment?).

• Translate via Cashew to (control state) ASMs via process algebra…
Cashew Process Algebra
Syntax and Semantics

\[\mathcal{E} ::= 0 \mid \Delta \mid \alpha.\mathcal{E} \mid \mathcal{E} + \mathcal{E} \mid \mathcal{E}|\mathcal{E} \mid [\mathcal{E}]\sigma(\mathcal{E}) \mid \mu X.\mathcal{E} \mid X \]

\[a, \pi, b, \bar{b}, \ldots \in \Lambda \cup \bar{\Lambda} \]
\[\alpha, \beta, \ldots \in \Lambda \cup \Lambda \cup \{\tau\} \]
\[\rho, \sigma, \ldots \in \mathcal{T} \]
\[\gamma, \delta \ldots \in \Lambda \cup \bar{\Lambda} \cup \{\tau\} \cup \mathcal{T} \]

<table>
<thead>
<tr>
<th>Act</th>
<th>[\alpha.P \xrightarrow{\alpha} P]</th>
</tr>
</thead>
</table>
| Sum1 | \[P \xrightarrow{\alpha} P' \]
| | \[P + Q \xrightarrow{\alpha} P' \] |
| Com1 | \[P \xrightarrow{\alpha} P' \]
| | \[P \mid Q \xrightarrow{\alpha} P' \mid Q \] |
| Com4 | \[P \xrightarrow{\alpha} P' \]
| | \[Q \xrightarrow{\alpha} Q' \]
| | \[P | Q \xrightarrow{\alpha} P' | Q' \] |
| Hid1 | \[P \xrightarrow{\alpha} P' \]
| | \[P/\sigma \xrightarrow{\alpha} P'/\sigma \] \[\gamma \neq \sigma \] |

| TO1 | \[[P]\sigma(Q) \xrightarrow{\gamma} Q \]
| | \[P \xrightarrow{\gamma} P' \] |
| TO2 | \[[P]\sigma(Q) \xrightarrow{\gamma} P', \gamma \neq \sigma \]
| | \[P \xrightarrow{\gamma} P' \] |

| Sum2 | \[Q \xrightarrow{\alpha} Q' \]
| | \[P + Q \xrightarrow{\alpha} Q' \] |
| Com2 | \[Q \xrightarrow{\alpha} Q' \]
| | \[P \mid Q \xrightarrow{\alpha} P \mid Q' \] |
| Com3 | \[P \xrightarrow{\alpha} P' \]
| | \[Q \xrightarrow{\alpha} Q' \]
| | \[P \mid Q \xrightarrow{\alpha} P' \mid Q' \] |

| Patient | \[\alpha.P \xrightarrow{\alpha} P \] |
| | \[P \mid Q \xrightarrow{\alpha} P \mid Q \] |
| Hid2 | \[P \xrightarrow{\gamma} P' \]
| | \[P/\sigma \xrightarrow{\gamma} P'/\sigma \] |
| Id1 | \[0 \xrightarrow{\gamma} 0 \] |

| Rec" | \[E \xrightarrow{\gamma} E' \]
| | \[\mu X.E \xrightarrow{\gamma} E'{\mu X.E}/X \] |