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Abstract. As semantic markup becomes ubiquitous, it will become important to 
be able to ask queries and obtain answers, using natural language (NL) 
expressions, rather than the keyword-based retrieval mechanisms used by the 
current search engines. AquaLog is a portable question-answering system 
which takes queries expressed in natural language and an ontology as input and 
returns answers drawn from the available semantic markup.  We say that 
AquaLog is portable, because the configuration time required to customize the 
system for a particular ontology is negligible. AquaLog combines several 
powerful techniques in a novel way to make sense of NL queries and to map 
them to semantic markup.  Moreover it also includes a learning component, 
which ensures that the performance of the system improves over time, in 
response to the particular community jargon used by the end users.  In this 
paper we describe the current version of the system, in particular discussing its 
portability, its reasoning capabilities, and its learning mechanism. 

1   Introduction 

The semantic web vision [1] is one in which rich, ontology-based semantic markup is 
widely available, thus opening the way to novel, sophisticated forms of question 
answering.  However, much work on ontology-driven QA tends to focus on the use of 
ontologies to support query expansion in information retrieval [2], rather than on 
exploiting the availability of semantic statements to provide precise answers to 
complex queries.  In particular, a knowledge based QA system can help with 
answering questions requiring situation-specific knowledge, where multiple pieces of 
information need to be inferred and combined at run time, rather than simply having a 
pre-written paragraph of text retrieved [3]. 

AquaLog is a portable question-answering system which takes queries expressed in 
natural language and an ontology as input and returns answers drawn from the 
available ontology-compliant semantic markup. We say that AquaLog is portable, 
because the configuration time required to customize the system for a particular 
ontology is negligible. AquaLog combines several powerful techniques in a novel 
way to make sense of NL queries and to map them to semantic markup. Specifically, 
it makes use of the GATE NLP platform, string metrics algorithms [4], WordNet  
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[5, 6], and novel ontology-based similarity services for relations and classes to make 
sense of user queries with respect to the target knowledge base. Also, AquaLog is 
coupled with a portable and contextualized learning mechanism, which ensures that 
the performance of the system improves over time, in response to the particular 
community jargon used by the end users. 

AquaLog is implemented in Java as a web application, using a client-server 
architecture. Moreover, it provides an API, which allows future integration in other 
platforms and independent use of its components. A key feature of AquaLog is the 
use of a plug-in mechanism, which allows AquaLog to be configured for different KR 
languages.  

In this paper we describe the current version of the system, in particular discussing 
its portability, its reasoning capabilities, and its learning mechanism. 

The paper is organized as follows: section 2 describes the AquaLog architecture. 
Section 3 describes the Linguistic Component embedded in AquaLog. Section 4 
describes the novel Relation Similarity Service and Learning Mechanism. Section 5 
describes a case of integration with Web Services. Section 6 describes the evaluation 
scenario, followed by discussion and directions for future work. Section 7 describes 
related work. Finally, section 8 re-iterates the main contributions of this work. 

2   The Architecture 

At a coarse-grained level of abstraction, the AquaLog architecture can be 
characterized as a waterfall model, during which a NL query gets translated into a set 
of intermediate, triple-based representations, query-triples, and then these are 
translated into ontology-compatible triples, as shown in figure 1. There are two main 
reasons for adopting a triple-based data model: first of all, it is possible to represent 
most queries as triples.  Secondly, RDF-based knowledge representation (KR) 
formalisms for the semantic web, such as RDF itself [7] or OWL [8] also subscribe to 
this binary relational model and express statements as <subject, predicate, object>. 
Hence, it makes sense for a query system targeted at the semantic web to adopt this 
data model. However AquaLog triples also have additional features in order to 
facilitate the reasoning about the answer, such as the voice and tense of the relation 
and the category. Depending on the category, the triple tells us how to deal with its 
elements, what inference process is required and what kind of answer can be 
expected. For instance, different queries may be represented by triples of the same 
category, since, in natural language, there can be different ways of asking the same 
question, i.e. “who works in akt1?” and “Show me all researchers involved in the akt 
project”. The classification of the triple may be modified during its life cycle in 
compliance with the target ontology it subscribes to. 

In what follows we provide a quick overview of the two main processing modules 
in AquaLog: the linguistic component and the relation similarity service. To illustrate 

                                                           
1  AKT is a EPSRC founded project in which the Open University is one of the partners. 

http://www.aktors.org/akt/  
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the system we will consider as test case the semantic web site currently under 
construction at the knowledge media institute, see http://plainmoor.open.ac.uk: 
8080/ksw, which relies on an ontology which characterizes the key aspects of 
academic life.  Specifically the ontology includes classes and relations to describe 
projects, technologies, people, news, events, organizations, publications, and research 
areas.  The full specification of the ontology can be found at http://plainmoor. 
open.ac.uk: 8080/ ksw/ontologies.html. The semantic markup is generated 
automatically by mining text resources and representing the information held in 
departmental databases, in terms of the ontology. 
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Fig. 1. The AquaLog Data Model 

3   Linguistic Component 

The Linguistic Component task is to map the NL input query to the Query-Triple. 
AquaLog uses the GATE [9, 10] infrastructure and resources in order to parse the 
question as part of the Linguistic Component. Communication between AquaLog and 
GATE takes place through the standard GATE API.  

After the execution of the GATE controller a set of syntactic annotations 
associated with the input query are returned. These annotations include information 
about sentences, tokens, nouns and verbs. When developing AquaLog we extended 
the set of annotations returned by GATE, by identifying terms, relations, question 
indicators (which/who/when, etc.) and patterns or types of questions. This is achieved 
through the use of JAPE grammars, which allow us to recognize regular expressions 
using previous annotations in documents. In other words, the JAPE grammars’ power 
lie in their ability to regard the data stored in the GATE annotation graphs as simple 
sequences, which can be matched deterministically by using regular expressions.  

Thanks to this architecture it is possible to extend the NL capability of the system 
in a relatively easy way (NL scalability). Currently, the Linguistic Component, 
through the JAPE grammars, dynamically identifies 23 different linguistic categories 
or intermediate representations, including: basic queries requiring an 
affirmation/negation or a description as an answer; or the big set of queries 
constituted by a wh-question, like “are there any phd students in dotkom?” where the 
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relation is implicit or unknown or “which is the job title of john?” where not 
information about the type of the expected answer is provided; etc. 

In some cases, e.g. When interpreting the query “list all the projects in KMi about 
Semantic Web”, the linguistic components cannot resolve the ambiguity associated 
with the NL query (it cannot identify the constituent to which each modifier has to be 
attached) and therefore it simply passes the ambiguity on to the Relation Similarity 
Service (RSS), which can use the ontology or ask the user to solve the ambiguity. 

It is important to emphasize that, at this stage the analysis is completely domain 
independent and is entirely based on the GATE analysis of the English language. The 
Query-Triple is only a formal, simplified way of representing the NL-query, which 
we use mainly because at this stage we do not have to worry about getting the 
representation right in respect to the specific domain knowledge. The role of the 
intermediate representation is simply to provide an easy way to manipulate input for 
the RSS. This design choice ensures the easy portability of the system with respect to 
both ontologies and natural languages. 

4   Relation Similarity Service 

This is the backbone of the question-answering system. The RSS component is 
invoked after the NL query has been transformed into a term-relation form and 
classified into the appropriate category. Essentially the RSS tries to make sense of the 
input query by looking at the structure of the ontology and the information available 
on the semantic web, as well as using string similarity matching, generic lexical 
resources such as WordNet, and a domain-dependent lexicon obtained through the use 
of a Learning Mechanism, as explained in a later section.  

An important aspect of the RSS is that it is interactive. In other words, when the 
RSS is not sure about how to disambiguate between two or more possible terms or 
relations in order to interpret a query it will ask the user for disambiguation. 

Relations and concepts’ names are identified and mapped within the ontology 
through the RSS and the Class Similarity Service (CSS) respectively.  The latter is a 
sub-module of the RSS, which deals with mapping linguistic terms to classes. Proper 
names, instead, are mapped into instances by means of the use of string distance 
metrics algorithms [4]. If this mapping fails a partial solution is implemented for 
affirmative/negative type of questions, where we make sense of questions in which 
only one of two instances is recognized. For instance, in the query “is Enrico working 
in ibm?”, “Enrico” could be mapped into “enrico-motta” in the KB but “ibm” is not 
found. The answer will output an indirect negative answer, namely the place were 
Enrico Motta is working.  

In any non-trivial natural language system, it is important to deal with the various 
sources of ambiguity and the possible ways of treating them. Some sentences are 
syntactically (structurally) ambiguous and although general world knowledge does 
not resolve this ambiguity, within a specific domain it may happen that only one of 
the interpretations is possible. The key issue here is to determine some constraints 
derived from the domain knowledge and to apply them in order to resolve ambiguity 
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[11]. Whether the ambiguity cannot be resolved by domain knowledge the only 
reasonable course of action is to get the user to choose between the alternative 
readings. 

Moreover, since every item on the onto-triple is an entry point in the knowledge 
base or ontology, they are also clickable, giving the user the possibility to get more 
information about it. The system scans the answers for words denoting instances 
which are represented in the knowledge base, and then adds hyperlinks to these 
words/phrases, indicating that the user can click on them. In fact, the RSS is designed 
to provide justifications for every step of the user interaction.  This is crucial to ensure 
user acceptance of the system. 

A typical situation the RSS has to cope with is one in which the structure of the 
intermediate query does not match the way the information is represented in the 
ontology. 

For instance, the query “who is the secretary in KMi?” is parsed into 
<person/organization, secretary, kmi>, following purely linguistic criteria. Then, the 
first step for the RSS is to identify, in the target KB that “kmi” is actually a “research-
institute” called “knowledge-media-institute”. Once a successful match is found, the 
problem becomes to find a relation which links the class research institute (or its 
superclass organization) to class person (or any of its subclasses, such as academic, 
student, etc...) or to class organization, by analyzing the taxonomy and relationships 
in the target KB. However, in this particular case there is a successful matching in the 
KB for secretary, even if secretary is not a relation but a subclass of person. The RSS 
reasons about the mismatch, re-classifies the intermediate query and generates the 
correct logical query, in compliance which the ontology, which is organized in terms 
of <secretary, works-for, kmi>. 

Whenever multiple relations are possible candidates for interpreting the query, if 
the ontology does not provide ways to further discriminate between them, string 
matching is used to determine the most likely candidate, using the relation name, the 
learning mechanism, or eventual aliases provided by lexical resources such as 
WordNet [12]. If no relations are found by using these methods, then the user is asked 
to choose from the current list of candidates. 

? Relations/concepts 
similarities

Translated query Ontological structures

THE PROBLEM

dynamic

secretary(person, KMI) works-in-unit (secretary, 
knowledge-media-institute)

 

Fig. 2. Scheme for mapping a Query-Triple into an Onto-Triple 

Another case is the one in which a query map to a set of triples. In these cases the 
ambiguity can also be related to the way the triples are linked. The RSS deals with 
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these cases both by analyzing the structure in the ontology and through the use of 
heuristics. 

For example, let’s consider the query “which news stories have been written by 
researchers in akt?”. To handle this case the RSS uses a heuristic which suggest the 
modifier “in akt” to be attached to the closest term that is represented by a class or 
non-ground term in the ontology, in this case the class “researchers”.  

An example of query disambiguation using a combination of linguistic and 
semantic information from the ontology can be seen in Figure 3. Here a user has 
asked “Who is the researcher in akt who is interested in the Semantic Web?”.  This 
query is syntactically ambiguous, because the second clause, “who is interested in the 
Semantic Web”, could syntactically link to either the researcher or “akt”.  Because 
AquaLog knows that “who” can only be a person or an organization, it correctly links 
it to “researcher”, rather than “akt”. However, there can be other situations where the 
disambiguation cannot be resolved by using the use of linguistic and/or heuristics 
and/or the context or semantics in the ontology, as for example in the query “which 
academic works with peter who has an interest in the semantic web?”. In this case 
since “academic” and “peter” are respectively a subclass and an instance of “person”, 
the sentence is truly ambiguous. In fact, it can be understood either as a combination 
of the resulting lists of the two questions “which academic works with peter” and 
“which academic has an interest in the semantic web”, or as the relative query “which 
academic works with peter where the peter we are looking for has an interest in the 
semantic web”. In such cases, user’s feedback is always required. 

 

Fig. 3. Example of context disambiguation by the RSS 
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4.1   Class Similarity Service 

The use of string metrics to map the generic term of the linguistic triple into a term in 
the ontology may not be enough. Therefore, an additional combination of methods to 
get synonyms (such as WordNet or our own lexicon) may be used in order to obtain 
the possible candidates in the ontology. This lexicon can be generated manually or 
can be built through a learning mechanism (a similar simplified approach to the 
learning mechanism for relations explained in a later section). The only requirement 
to execute this learning mechanism for classes is the availability of the ontology 
mapping for one of the two terms of the triple. In this way, through the ontology 
relationships that are valid for this term, we can identify a set of possible candidate 
terms that can complete the triple. User’s feedback is required to select whether one 
of the candidate terms is the one we are looking for, so that the system is able to learn 
it for future occasions.  

4.2   Learning Mechanism 

Since the universe of discourse we are working with is determined by and limited to 
the particular ontology used, there will normally be a number of discrepancies 
between the natural language questions prompted by the user and the set of terms 
recognized in the ontology. External resources like WordNet generally help in making 
sense of unknown terms, giving a set of synonyms and semantically related words 
which could be detected in the knowledge base. However, in quite a few cases, the 
RSS fails in the production of a genuine onto-triple because of a user-specific 
“jargon” found in the linguistic triple.  In such a case, it is necessary to learn the new 
terms employed by the user and disambiguate them in order to produce an adequate 
mapping of the classes of the ontology.  A very common and highly generic example, 
in our departmental ontology, is the relation works-for, to which users normally relate 
a number of different expressions: is working, works, collaborate, is involved. In all 
these cases the user is asked to disambiguate the relation (choosing from the set of 
ontology relations consistent with the two question's arguments) and decide if a new 
mapping should be learned between his/her natural-language-universe and the 
ontology-language-universe.   

4.2.1   Architecture 
The learning mechanism in AquaLog consists of two different methods, the learning 
and the matching (fig. 4). The latter is called whenever the RSS cannot relate a 
linguistic triple to the ontology or the knowledge base, while the former is always 
called after the user manually disambiguates an unrecognized term (and this 
substitution gives a positive result). 

When a new item is learned, it is recorded in a database together with the relation it 
refers to and a series of constraints that will determine its reuse within similar 
contexts. As it will be explained below, the notion of context is crucial in order to 
deliver a feasible matching of the recorded words. In the current version the context is 
defined by the arguments of the question, the name of the ontology and the user 
information. This set of characteristics constitutes a particular representation of the 
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context and defines a structured space of hypothesis analogue to that one of a version 
space2 [13].  

In future work, this context will be further extended to provide more granularity 
and semantic expressiveness.  

When a question with a similar context is prompted, if the RSS cannot 
disambiguate the relation-name, the database is scanned for some matching results. 
Subsequently, these results will be context-proved in order to check their consistency 
with the stored version spaces. By tightening and loosening the constraints of the 
version space, the learning mechanism is thus able to determine when to propose a 
substitution and when not to. For example, the user-constraint is a feature that is often 
bypassed, because we are inside a generic-user session, or because we might want to 
have all the results of all the users from a single database query.  

Before the matching method, we are always in a situation where the onto-triple is 
incomplete, the relation is unknown or it is a concept. If the new word is found in the 
database, the context is checked to see if it is consistent with what has been recorded 
previously. If this gives a positive result we can have a valid onto-triple substitution 
that triggers the inference engine (this latter basically just scans the knowledge base 
for results); instead, if the matching fails, a user disambiguation is needed in order to 
complete the onto-triple. In this case, before letting the inference engine work out the 
results, the context is drawn from the particular question entered and it is learned 
together with the relation and the other information in the version space. 

Of course, the matching method's movement in the ontology is opposite to the 
learning method's one. The latter, starting from the arguments, tries to go up until it 
reaches the highest valid classes possible (GetContext method), while the former 
takes the two arguments and checks if they are subclasses of what has been stored in 
the database (CheckContext method). It is also important to notice that the Learning 
Mechanism does not have a question classification on its own, but it relies on the RSS 
classification. 

4.2.2   Context Definition 
As said above, the notion of context is fundamental in order to deliver a feasible 
substitution service.  In fact, two people could use the same jargon but meaning 
different things. 

    For example, let’s consider the question "Who collaborates with the knowledge 
media institute?” and assume that the system is not able to solve the linguistic 
ambiguity of the word "collaborate".  The first time, some help from the user is 
needed, who selects "has-affiliation-to-unit" from a list of possible relations in the 
ontology.  A mapping is therefore created between "collaborate” and "has-affiliation-
to-unit", so that the next time the learning mechanism is called it will be able to 
recognize this specific user jargon. 

Let's imagine now a professor, who asks the system the same question “Who 
collaborates with the knowledge media institute?”, but is referring to other research  
 
                                                           
2 A version space is an inductive learning technique proposed by Mitchell in order to represent 

the consistency of a set of hypothesis with a target concept.  
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Fig. 4. The learning mechanism architecture 

labs or academic units involved with the knowledge media institute. In fact, when 
asked to choose from the list of possible ontology relations, he/she will possibly enter 
“works-in-the-same-project”. 

The problem, so, is to maintain the two mappings separated while still providing 
some kind of generalization. This is achieved through the definition of the question's 
context as determined by its coordinates in the ontology. In fact, since the referring 
(and pluggable) ontology is our universe of discourse, the context must be found 
within this universe. In particular, since we are dealing with triples, and in the triple 
what we learn is usually the relation (that is, the middle item), the context is delimited 
by the two arguments of the triple. In the ontology, these are classes or instances, 
connected by the relation.  

Therefore, in the question "Who collaborates with the knowledge media institute?" 
the context of the mapping from " collaborates " to " has-affiliation-to-unit " is given 
by the two arguments "person" (in the ontology “who” is always translated into 
“person” or “organization”)  and " knowledge media institute ".  What is stored in the 
database, for future reuse, is the new word (which is also the key field in order to 
access the lexicon during the matching method), its mapping in the ontology, the two 
context-arguments, the name of the ontology and the user details.  

4.2.3   Context Generalization 
Of course, this kind of recorded context is quite specific and does not let other 
questions benefit from the same learned mapping. For example, if afterwards we 
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asked "Who collaborates with the Edinburgh department of informatics?" we would 
not get an appropriate matching, even if the mapping made sense also in this case.  

In order to generalize these results the strategy adopted is to record the most 
generic classes in the ontology which corresponds to the two triple's arguments, and, 
at the same time, can handle the same relation. Namely, in our case, we would store 
the concepts "people" and "organization-unit". This is achieved through a 
backtracking algorithm in the Learning Mechanism, that takes the relation, identifies 
its type (the type already corresponds to the highest possible class of one argument, 
by definition) and goes through all the connected superclasses of the other argument 
while checking if they can handle that same relation, with the given type. Thus, since 
only the highest classes of an ontology’s branch are kept, all the questions similar to 
the ones we have seen will fall within the same set, because their arguments are 
subclasses or instances of the same concepts.  

If we go back to the first example presented (“Who collaborates with the 
knowledge media institute?”), we can see that the difference in meaning between the 
two interpretations <collaborate> →<has-affiliation-to-unit> and <collaborate>→ 
<works-in-the-same-project> is preserved, because the two mappings entail two 
different contexts. Namely, in the first case, the context is given by <people> and 
<organization-unit>, while in the second case the context will be <organization> and 
<organization-unit>. Any other matching could not mistake the two, since what is 
learned is abstract but still specific enough to rule out the different cases.  

4.2.4   User Communities 
Another important feature of the learning mechanism is its support for a community 
of users. As said above, the user details are maintained within the version space and 
can be considered when interpreting a query. AquaLog allows the user to enter his/her 
personal information and thus to log in and start a session where all the actions 
performed on the learned lexicon table are also strictly connected to his/her profile. 
For example, during a specific user-session it is possible to delete some previous 
recorded mappings, action that is normally not permitted to the generic user. This 
latter has in fact the roughest access to the learned material: having no constraints on 
the user field, the database query will return many more mappings and, quite likely, 
also meanings that are not desired.  

Current work on the learning mechanism is pretty much concentrated on the 
augmentation of the user-profile's details. In fact, through a specific auxiliary 
ontology that describes a series of user's profiles, it is possible to infer connections 
between the type of mapping and the type of user. Namely, it will be possible to 
correlate a particular jargon to a set of users. Moreover, through an intelligent 
reasoning service, this correlation will become dynamic, being continually extended 
or diminished consistently with the relations between user's choices and user's 
information.  For example, if the system detects that a large number of registered 
users, all characterized by the fact of being PhD students, keep employing the same 
jargon, it could extend the same mappings to all the other registered PhD students. 
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5   Integration with Web Services 

As we said before, every item in the onto-triple is an entry point to the knowledge 
base or to the ontology. Therefore, items are clickable and the user can get more 
information about them. Optionally, AquaLog can be configured to use Semantic 
Web Services in order to get more information about a particular item (i.e. instance or 
concept), when required.  Here AquaLog uses the same mechanism used by Magpie 
[14], accessing services published against the same ontology and KB.  

6   Evaluation Scenario 

AquaLog allows a user who has a question in mind and knows something about the 
domain to query the semantic markup viewed as a knowledge base. The aim is to 
provide a system which does not require users to learn specialized vocabularies, or to 
know the structure of the knowledge base. However, as pointed in [11], although they 
have to have some idea of the contents of the domain they may have some 
misconceptions. Therefore some process of familiarization is normally required.  

A full evaluation of AquaLog requires both an evaluation of its query answering 
ability as well an evaluation of the overall user experience. Moreover, because one of 
our key aims is to make AquaLog an interface for the semantic web, the portability 
across ontologies will also have to be evaluated formally. 

For the first version of AquaLog [15] we performed an initial study, whose aim 
was to assess to what extent the AquaLog application built using AquaLog with the 
AKT ontology and the KMi knowledge base satisfied user expectations about the 
range of questions the system should be able to answer. A second aim of the 
experiment was also to provide information about the nature of the possible 
extensions needed to the ontology and the linguistic components – i.e., we not only 
wanted to assess the current coverage of the system but also get some data about the 
complexity of the possible changes required to generate the next version of the 
system.  

Thus, we asked 10 members of KMi, none of whom had been involved in the 
AquaLog project, to generate questions for the system. Because one of the aims of the 
experiment was to measure the linguistic coverage of the system with respect to user 
needs, we did not give them much information about the linguistic ability of the 
system.   

We collected in total 76 different questions, 37 of which were handled correctly by 
AquaLog, i.e., 48.68% of the total.  This was a pretty good result, considering that no 
linguistic restrictions were imposed on the questions.  

As pointed in [27] it is very difficult to devise a sublanguage which is sufficiently 
expressive, yet avoids ambiguity and seems reasonable natural. Furthermore the 
limitations on linguistic coverage will not be obvious for the user and as a result, 
independently of whether a particular set of queries is answered or not, the system 
becomes unusable. Therefore, the conclusion of this previous study was that it was 
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absolutely crucial to improve the linguistic coverage of the system, which accounted 
for 69% of the failures.  

For the current version of AquaLog, the linguistic coverage (and therefore data 
model and similarity services) has been extended considerably. At the same time 
AquaLog can now also deal with the ambiguity problems, derived from the use of 
more extensive grammars.  

However, in this previous study we also identified failures due to a lack of services 
defined over ontologies (accounted for 20.5% of the errors). For instance, one query 
asked about “the top researchers”, which requires a mechanism for ranking 
researchers in the lab - people could be ranked according to citation impact, formal 
status in the department, etc. In the context of the semantic web, we believe that these 
failures are less to do with shortcomings of the ontology than with the lack of 
appropriate services, defined over the ontology. 

No work has been done yet in relation to the service failures, which remains a 
future line of work for future versions of the system.   

In order to evaluate the portability of the system we interfaced AquaLog to the 
Wine Ontology [16], an ontology used to illustrate the specification of the OWL W3C 
recommendation. The experiment confirmed the thesis that AquaLog is ontology 
independent, as we did not notice any hitch in the behaviour of this configuration 
compared to the others built previously. However, this ontology highlighted some 
AquaLog limitations, which must be addressed in the near future. For instance, a 
direct question like “which wines are recommended with cakes” will fail because 
there is not a direct relation between wines and desserts, as there is a mediating 
concept called “mealcourse”. However, the knowledge is in the ontology, and the 
question can be addressed if reformulated as “what wines are recommended for 
dessert courses based on cakes?”. 

The wine ontology does not have much information instantiated, and as a result no 
answer can be found for most of the questions. However, it is a good test case for the 
Linguistic and Similarity Components responsible for creating the ontology 
compliance triple (from which an answer can be inferred in a relatively easy way).  

7   Related Work 

7.1   Close-Domain Natural Language nterfaces 

This scenario is of course very similar to asking natural language queries to databases 
(NLDB), which has long been an area of research in the artificial intelligence and 
database communities [17, 18, 19, 20, 21], even if as [22, 23] say “in the past decade 
has somewhat gone out of fashion”. The use of natural language to access relational 
databases can be traced back from the late sixties and early seventies. In [22] a 
detailed overview of the state of the art for these systems can be found. The main 
difference between AquaLog and the latest generation of NLDB systems [24] is that 
AquaLog uses an intermediate representation throughout the entire process, from the 
representation of the user’s query (NL front end) to the representation of an ontology 
compliant triple (through the use of similarity services), from which an answer can be 

I
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directly inferred. It takes advantage of the structure of ontologies in a way that makes 
the entire process highly portable.  

PRECISE [25] maps questions to the corresponding SQL query, by identifying 
classes of questions that are easy to understand in a well defined sense: the paper 
defines a formal notion of semantically tractable questions. Questions are sets of 
attribute/value pairs and a relation token corresponds to either an attribute token or a 
value token. In PRECISE the problem of finding a mapping from the tokenization to 
the database requires that all tokens must be distinct; questions with unknown words 
are not semantically tractable and cannot be handled. In contrast with PRECISE, 
AquaLog employs similarity services to interpret the user query by means of the 
vocabulary in the ontology. As a consequence, AquaLog is able to reason about the 
ontology structure in order to make sense of unknown relations or classes which 
appear not to have any match in the KB or ontology.  

7.2   Open-Domain QA Systems 

Most current work on question answering is somewhat different in nature from 
AquaLog as it concerns open-domain systems. However, there are linguistic problems 
common in most kinds of natural language understanding systems. 

Most text based QA applications typically involve two steps [26]: 1. Identifying 
the semantic type of the entity sought by the question (a date, a person and so on); 2. 
Determining additional constraints on the answer entity, i.e. identifying key words or 
syntactic or semantic relations to be used in matching candidate answers. Various 
systems have, therefore built hierarchies of question types based on the types of 
answers sought [27, 28, 29, 30]. 

As pointed by R. Srihari et al. in  [28]: (i) IE can provide solid support for QA; (ii) 
low-level IE like Named Entity (NE) tagging is often a necessary component (an 
analysis showed that over 80% out of 200 questions asked for an NE as a response); 
(iii) a robust natural language shallow parser provides a structural basis for handling 
questions; (iv) high-level domain independent IE, i.e., extraction of multiple 
relationships between entities, is expected to bring about a breakthrough in QA.  

AquaLog also subscribes to point (iii), however the main two differences with 
open-domain systems are: (1) it is not necessary to build hierarchies or heuristics to 
recognize name entities, as all the semantic information needed is in the ontology; (2) 
AquaLog has already implemented mechanisms to extract and exploit the 
relationships to understand a query. Nevertheless, the goal of the main similarity 
service in AquaLog, the RSS, is to map the relationships in the linguistic triple into an 
ontology-compliant-triple. As described in [28] NE is necessary but not complete in 
answering questions because NE by nature only extracts isolated individual entities 
from text, therefore methods like “the nearest NE to the queries key words” are used.  

Both AquaLog and open-domain systems attempt to find synonyms plus their 
morphological variants to the terms or key words. Also in both cases, at times, the 
rules leave ambiguity unresolved and produce non-deterministic output for the focus 
of the question or asking point (for instance, who can be related to a person or to an 
organization). 
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As in open-domain systems, AquaLog also automatically classifies the question 
beforehand. The main difference is that AquaLog classifies the question based on the 
kind of triple needed, while most of the open-domain QA systems classify questions 
according to their answer target [30] (person, location, date, ..). The triple contains 
information not only about the answer expected or focus, which is what we call the 
generic term of the triple, but also about the relationships between the generic term 
and the other terms participating in the question (each relationship is represented in a 
different triple). Different queries may belong to the same triple category. An efficient 
system should therefore group together equivalent questions types. 

The best result of the TREC9 [31] were obtained by the system FALCON 
described in Harabaigiu et al. [32]. When the question concept indicating the answer 
type is identified, it is mapped into an answer taxonomy. The top categories are 
connected to several word classes from WordNet. The example shown in [32] 
identifies the expected answer type of the question “what do penguins eat?” to be 
food since it is the most widely used concept in the glosses of the subhierarchy of the 
noun synset {eating, feeding}.  Also, FALCON gives a cached answer if the similar 
question has already been asked before; a similarity measure is calculated to see if the 
given question is a reformulation of a previous one. A similar approach is adopted by 
the learning mechanism in AquaLog, where the similarity is given by the context 
stored in the triple. 

7.3   Open-Domain QA Systems Using Triple Representation 

The START [33] system goal is also to extract answers from text. AquaLog relational 
data model (triple-based) is somehow similar to the approach adopted by START, 
called “object-property-value”. The difference is that instead of properties we are 
looking for relations between terms, or between a term and its value. Using an 
example presented in [33]: “What languages are spoken in Guernsey?”, for START 
the property is “languages” between the Object “Guernsey” and the value “French”; 
for AquaLog it will be translated into a relation “are spoken” between a term 
“language” and a location “Guernsey”.  

The system described in Litkowski et al. [34], called DIMAP, extracts “semantic 
relation triples” from a document. The semantic relation triple described consists of a 
discourse entity, a semantic relation that characterizes the entity’s role in the sentence 
and a governing word (generally the word in the sentence that the discourse entity 
stood in relation to). The semantic relation and the governing words were not 
identified for all discourse entities, but a record for each entity was still added to the 
database sentence (on average 9.8 triples per sentence). The same analysis is 
performed to create a set of records for each question (in average 3.3 triples per 
sentence), in which one of the semantic relation triples contained an unbound variable 
as a discourse entity, corresponding to the type of question. DIMAP-QA converts the 
document into triples and AquaLog uses the ontology, which it may be seen as a 
collection of triples. One of the current AquaLog limitations is that the number of  
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triples is fixed for each query category, although, the AquaLog triples change during 
its life cycle. However, the performance is still high as most of questions can be 
translated into one or two triples.  

7.4   Ontologies in Question Answering 

We have already mentioned that many systems simply use an ontology as a 
mechanism to support query expansion in information retrieval. In contrast with 
these systems AquaLog is interested in providing answers derived from semantic 
annotations to queries expressed in NL. In the paper by R. Basili [35] the possibility 
of building an ontology-based question answering system in the context of the 
semantic web is discussed. Open domain QA systems do not rely on specialized 
conceptual knowledge as they use a mixture of statistical techniques and shallow 
linguistic analysis. Ontological QA systems propose to attack the problem by means 
of an internal unambiguous knowledge representation. Their approach is being 
investigated in the context of EU project MOSES, with the explicit objective  
of developing an ontology-based methodology to search, create, maintain and  
adapt semantically structured Web contents according to the vision of semantic 
web. The approach and scenario has many similarities with AquaLog. However, 
AquaLog is implemented on-line and has a wider linguistic coverage. The query 
classification is guided by the equivalent semantic representations or triples. The 
mapping process is converting the elements of the triple into entry-points to the 
ontology and KB.  

8   Conclusion 

In this paper we have described the AquaLog ontology-driven query answering 
system in the context of the Semantic Web scenario. AquaLog presents an elegant 
solution in which different strategies are combined together to make sense of an NL 
query with respect to the universe of discourse covered by the ontology. Its ontology 
portability capabilities make AquaLog a suitable NL front-end for the Semantic 
Web. 
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