

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 546 – 562, 2005.
© Springer-Verlag Berlin Heidelberg 2005

AquaLog: An Ontology-Portable Question Answering
System for the Semantic Web

Vanessa Lopez, Michele Pasin, and Enrico Motta

Knowledge Media Institute, The Open University,
Walton Hall, Milton Keynes,
MK7 6AA, United Kingdom

{v.lopez, m.pasin, e.motta}@open.ac.uk

Abstract. As semantic markup becomes ubiquitous, it will become important to
be able to ask queries and obtain answers, using natural language (NL)
expressions, rather than the keyword-based retrieval mechanisms used by the
current search engines. AquaLog is a portable question-answering system
which takes queries expressed in natural language and an ontology as input and
returns answers drawn from the available semantic markup. We say that
AquaLog is portable, because the configuration time required to customize the
system for a particular ontology is negligible. AquaLog combines several
powerful techniques in a novel way to make sense of NL queries and to map
them to semantic markup. Moreover it also includes a learning component,
which ensures that the performance of the system improves over time, in
response to the particular community jargon used by the end users. In this
paper we describe the current version of the system, in particular discussing its
portability, its reasoning capabilities, and its learning mechanism.

1 Introduction

The semantic web vision [1] is one in which rich, ontology-based semantic markup is
widely available, thus opening the way to novel, sophisticated forms of question
answering. However, much work on ontology-driven QA tends to focus on the use of
ontologies to support query expansion in information retrieval [2], rather than on
exploiting the availability of semantic statements to provide precise answers to
complex queries. In particular, a knowledge based QA system can help with
answering questions requiring situation-specific knowledge, where multiple pieces of
information need to be inferred and combined at run time, rather than simply having a
pre-written paragraph of text retrieved [3].

AquaLog is a portable question-answering system which takes queries expressed in
natural language and an ontology as input and returns answers drawn from the
available ontology-compliant semantic markup. We say that AquaLog is portable,
because the configuration time required to customize the system for a particular
ontology is negligible. AquaLog combines several powerful techniques in a novel
way to make sense of NL queries and to map them to semantic markup. Specifically,
it makes use of the GATE NLP platform, string metrics algorithms [4], WordNet

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 547

[5, 6], and novel ontology-based similarity services for relations and classes to make
sense of user queries with respect to the target knowledge base. Also, AquaLog is
coupled with a portable and contextualized learning mechanism, which ensures that
the performance of the system improves over time, in response to the particular
community jargon used by the end users.

AquaLog is implemented in Java as a web application, using a client-server
architecture. Moreover, it provides an API, which allows future integration in other
platforms and independent use of its components. A key feature of AquaLog is the
use of a plug-in mechanism, which allows AquaLog to be configured for different KR
languages.

In this paper we describe the current version of the system, in particular discussing
its portability, its reasoning capabilities, and its learning mechanism.

The paper is organized as follows: section 2 describes the AquaLog architecture.
Section 3 describes the Linguistic Component embedded in AquaLog. Section 4
describes the novel Relation Similarity Service and Learning Mechanism. Section 5
describes a case of integration with Web Services. Section 6 describes the evaluation
scenario, followed by discussion and directions for future work. Section 7 describes
related work. Finally, section 8 re-iterates the main contributions of this work.

2 The Architecture

At a coarse-grained level of abstraction, the AquaLog architecture can be
characterized as a waterfall model, during which a NL query gets translated into a set
of intermediate, triple-based representations, query-triples, and then these are
translated into ontology-compatible triples, as shown in figure 1. There are two main
reasons for adopting a triple-based data model: first of all, it is possible to represent
most queries as triples. Secondly, RDF-based knowledge representation (KR)
formalisms for the semantic web, such as RDF itself [7] or OWL [8] also subscribe to
this binary relational model and express statements as <subject, predicate, object>.
Hence, it makes sense for a query system targeted at the semantic web to adopt this
data model. However AquaLog triples also have additional features in order to
facilitate the reasoning about the answer, such as the voice and tense of the relation
and the category. Depending on the category, the triple tells us how to deal with its
elements, what inference process is required and what kind of answer can be
expected. For instance, different queries may be represented by triples of the same
category, since, in natural language, there can be different ways of asking the same
question, i.e. “who works in akt1?” and “Show me all researchers involved in the akt
project”. The classification of the triple may be modified during its life cycle in
compliance with the target ontology it subscribes to.

In what follows we provide a quick overview of the two main processing modules
in AquaLog: the linguistic component and the relation similarity service. To illustrate

1 AKT is a EPSRC founded project in which the Open University is one of the partners.

http://www.aktors.org/akt/

548 V. Lopez, M. Pasin, and E. Motta

the system we will consider as test case the semantic web site currently under
construction at the knowledge media institute, see http://plainmoor.open.ac.uk:
8080/ksw, which relies on an ontology which characterizes the key aspects of
academic life. Specifically the ontology includes classes and relations to describe
projects, technologies, people, news, events, organizations, publications, and research
areas. The full specification of the ontology can be found at http://plainmoor.
open.ac.uk: 8080/ ksw/ontologies.html. The semantic markup is generated
automatically by mining text resources and representing the information held in
departmental databases, in terms of the ontology.

NL SENTENCE
INPUT

LINGUISTIC
&

QUERY CLASSIFICATION

RELATION
SIMILARITY

SERVICE

INFERENCE
ENGINE

QUERY

TRIPLES

ONTOLOGY

COMPATIBLE

TRIPLES

ANSWER

Fig. 1. The AquaLog Data Model

3 Linguistic Component

The Linguistic Component task is to map the NL input query to the Query-Triple.
AquaLog uses the GATE [9, 10] infrastructure and resources in order to parse the
question as part of the Linguistic Component. Communication between AquaLog and
GATE takes place through the standard GATE API.

After the execution of the GATE controller a set of syntactic annotations
associated with the input query are returned. These annotations include information
about sentences, tokens, nouns and verbs. When developing AquaLog we extended
the set of annotations returned by GATE, by identifying terms, relations, question
indicators (which/who/when, etc.) and patterns or types of questions. This is achieved
through the use of JAPE grammars, which allow us to recognize regular expressions
using previous annotations in documents. In other words, the JAPE grammars’ power
lie in their ability to regard the data stored in the GATE annotation graphs as simple
sequences, which can be matched deterministically by using regular expressions.

Thanks to this architecture it is possible to extend the NL capability of the system
in a relatively easy way (NL scalability). Currently, the Linguistic Component,
through the JAPE grammars, dynamically identifies 23 different linguistic categories
or intermediate representations, including: basic queries requiring an
affirmation/negation or a description as an answer; or the big set of queries
constituted by a wh-question, like “are there any phd students in dotkom?” where the

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 549

relation is implicit or unknown or “which is the job title of john?” where not
information about the type of the expected answer is provided; etc.

In some cases, e.g. When interpreting the query “list all the projects in KMi about
Semantic Web”, the linguistic components cannot resolve the ambiguity associated
with the NL query (it cannot identify the constituent to which each modifier has to be
attached) and therefore it simply passes the ambiguity on to the Relation Similarity
Service (RSS), which can use the ontology or ask the user to solve the ambiguity.

It is important to emphasize that, at this stage the analysis is completely domain
independent and is entirely based on the GATE analysis of the English language. The
Query-Triple is only a formal, simplified way of representing the NL-query, which
we use mainly because at this stage we do not have to worry about getting the
representation right in respect to the specific domain knowledge. The role of the
intermediate representation is simply to provide an easy way to manipulate input for
the RSS. This design choice ensures the easy portability of the system with respect to
both ontologies and natural languages.

4 Relation Similarity Service

This is the backbone of the question-answering system. The RSS component is
invoked after the NL query has been transformed into a term-relation form and
classified into the appropriate category. Essentially the RSS tries to make sense of the
input query by looking at the structure of the ontology and the information available
on the semantic web, as well as using string similarity matching, generic lexical
resources such as WordNet, and a domain-dependent lexicon obtained through the use
of a Learning Mechanism, as explained in a later section.

An important aspect of the RSS is that it is interactive. In other words, when the
RSS is not sure about how to disambiguate between two or more possible terms or
relations in order to interpret a query it will ask the user for disambiguation.

Relations and concepts’ names are identified and mapped within the ontology
through the RSS and the Class Similarity Service (CSS) respectively. The latter is a
sub-module of the RSS, which deals with mapping linguistic terms to classes. Proper
names, instead, are mapped into instances by means of the use of string distance
metrics algorithms [4]. If this mapping fails a partial solution is implemented for
affirmative/negative type of questions, where we make sense of questions in which
only one of two instances is recognized. For instance, in the query “is Enrico working
in ibm?”, “Enrico” could be mapped into “enrico-motta” in the KB but “ibm” is not
found. The answer will output an indirect negative answer, namely the place were
Enrico Motta is working.

In any non-trivial natural language system, it is important to deal with the various
sources of ambiguity and the possible ways of treating them. Some sentences are
syntactically (structurally) ambiguous and although general world knowledge does
not resolve this ambiguity, within a specific domain it may happen that only one of
the interpretations is possible. The key issue here is to determine some constraints
derived from the domain knowledge and to apply them in order to resolve ambiguity

550 V. Lopez, M. Pasin, and E. Motta

[11]. Whether the ambiguity cannot be resolved by domain knowledge the only
reasonable course of action is to get the user to choose between the alternative
readings.

Moreover, since every item on the onto-triple is an entry point in the knowledge
base or ontology, they are also clickable, giving the user the possibility to get more
information about it. The system scans the answers for words denoting instances
which are represented in the knowledge base, and then adds hyperlinks to these
words/phrases, indicating that the user can click on them. In fact, the RSS is designed
to provide justifications for every step of the user interaction. This is crucial to ensure
user acceptance of the system.

A typical situation the RSS has to cope with is one in which the structure of the
intermediate query does not match the way the information is represented in the
ontology.

For instance, the query “who is the secretary in KMi?” is parsed into
<person/organization, secretary, kmi>, following purely linguistic criteria. Then, the
first step for the RSS is to identify, in the target KB that “kmi” is actually a “research-
institute” called “knowledge-media-institute”. Once a successful match is found, the
problem becomes to find a relation which links the class research institute (or its
superclass organization) to class person (or any of its subclasses, such as academic,
student, etc...) or to class organization, by analyzing the taxonomy and relationships
in the target KB. However, in this particular case there is a successful matching in the
KB for secretary, even if secretary is not a relation but a subclass of person. The RSS
reasons about the mismatch, re-classifies the intermediate query and generates the
correct logical query, in compliance which the ontology, which is organized in terms
of <secretary, works-for, kmi>.

Whenever multiple relations are possible candidates for interpreting the query, if
the ontology does not provide ways to further discriminate between them, string
matching is used to determine the most likely candidate, using the relation name, the
learning mechanism, or eventual aliases provided by lexical resources such as
WordNet [12]. If no relations are found by using these methods, then the user is asked
to choose from the current list of candidates.

? Relations/concepts
similarities

Translated query Ontological structures

THE PROBLEM

dynamic

secretary(person, KMI) works-in-unit (secretary,
knowledge-media-institute)

Fig. 2. Scheme for mapping a Query-Triple into an Onto-Triple

Another case is the one in which a query map to a set of triples. In these cases the
ambiguity can also be related to the way the triples are linked. The RSS deals with

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 551

these cases both by analyzing the structure in the ontology and through the use of
heuristics.

For example, let’s consider the query “which news stories have been written by
researchers in akt?”. To handle this case the RSS uses a heuristic which suggest the
modifier “in akt” to be attached to the closest term that is represented by a class or
non-ground term in the ontology, in this case the class “researchers”.

An example of query disambiguation using a combination of linguistic and
semantic information from the ontology can be seen in Figure 3. Here a user has
asked “Who is the researcher in akt who is interested in the Semantic Web?”. This
query is syntactically ambiguous, because the second clause, “who is interested in the
Semantic Web”, could syntactically link to either the researcher or “akt”. Because
AquaLog knows that “who” can only be a person or an organization, it correctly links
it to “researcher”, rather than “akt”. However, there can be other situations where the
disambiguation cannot be resolved by using the use of linguistic and/or heuristics
and/or the context or semantics in the ontology, as for example in the query “which
academic works with peter who has an interest in the semantic web?”. In this case
since “academic” and “peter” are respectively a subclass and an instance of “person”,
the sentence is truly ambiguous. In fact, it can be understood either as a combination
of the resulting lists of the two questions “which academic works with peter” and
“which academic has an interest in the semantic web”, or as the relative query “which
academic works with peter where the peter we are looking for has an interest in the
semantic web”. In such cases, user’s feedback is always required.

Fig. 3. Example of context disambiguation by the RSS

552 V. Lopez, M. Pasin, and E. Motta

4.1 Class Similarity Service

The use of string metrics to map the generic term of the linguistic triple into a term in
the ontology may not be enough. Therefore, an additional combination of methods to
get synonyms (such as WordNet or our own lexicon) may be used in order to obtain
the possible candidates in the ontology. This lexicon can be generated manually or
can be built through a learning mechanism (a similar simplified approach to the
learning mechanism for relations explained in a later section). The only requirement
to execute this learning mechanism for classes is the availability of the ontology
mapping for one of the two terms of the triple. In this way, through the ontology
relationships that are valid for this term, we can identify a set of possible candidate
terms that can complete the triple. User’s feedback is required to select whether one
of the candidate terms is the one we are looking for, so that the system is able to learn
it for future occasions.

4.2 Learning Mechanism

Since the universe of discourse we are working with is determined by and limited to
the particular ontology used, there will normally be a number of discrepancies
between the natural language questions prompted by the user and the set of terms
recognized in the ontology. External resources like WordNet generally help in making
sense of unknown terms, giving a set of synonyms and semantically related words
which could be detected in the knowledge base. However, in quite a few cases, the
RSS fails in the production of a genuine onto-triple because of a user-specific
“jargon” found in the linguistic triple. In such a case, it is necessary to learn the new
terms employed by the user and disambiguate them in order to produce an adequate
mapping of the classes of the ontology. A very common and highly generic example,
in our departmental ontology, is the relation works-for, to which users normally relate
a number of different expressions: is working, works, collaborate, is involved. In all
these cases the user is asked to disambiguate the relation (choosing from the set of
ontology relations consistent with the two question's arguments) and decide if a new
mapping should be learned between his/her natural-language-universe and the
ontology-language-universe.

4.2.1 Architecture
The learning mechanism in AquaLog consists of two different methods, the learning
and the matching (fig. 4). The latter is called whenever the RSS cannot relate a
linguistic triple to the ontology or the knowledge base, while the former is always
called after the user manually disambiguates an unrecognized term (and this
substitution gives a positive result).

When a new item is learned, it is recorded in a database together with the relation it
refers to and a series of constraints that will determine its reuse within similar
contexts. As it will be explained below, the notion of context is crucial in order to
deliver a feasible matching of the recorded words. In the current version the context is
defined by the arguments of the question, the name of the ontology and the user
information. This set of characteristics constitutes a particular representation of the

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 553

context and defines a structured space of hypothesis analogue to that one of a version
space2 [13].

In future work, this context will be further extended to provide more granularity
and semantic expressiveness.

When a question with a similar context is prompted, if the RSS cannot
disambiguate the relation-name, the database is scanned for some matching results.
Subsequently, these results will be context-proved in order to check their consistency
with the stored version spaces. By tightening and loosening the constraints of the
version space, the learning mechanism is thus able to determine when to propose a
substitution and when not to. For example, the user-constraint is a feature that is often
bypassed, because we are inside a generic-user session, or because we might want to
have all the results of all the users from a single database query.

Before the matching method, we are always in a situation where the onto-triple is
incomplete, the relation is unknown or it is a concept. If the new word is found in the
database, the context is checked to see if it is consistent with what has been recorded
previously. If this gives a positive result we can have a valid onto-triple substitution
that triggers the inference engine (this latter basically just scans the knowledge base
for results); instead, if the matching fails, a user disambiguation is needed in order to
complete the onto-triple. In this case, before letting the inference engine work out the
results, the context is drawn from the particular question entered and it is learned
together with the relation and the other information in the version space.

Of course, the matching method's movement in the ontology is opposite to the
learning method's one. The latter, starting from the arguments, tries to go up until it
reaches the highest valid classes possible (GetContext method), while the former
takes the two arguments and checks if they are subclasses of what has been stored in
the database (CheckContext method). It is also important to notice that the Learning
Mechanism does not have a question classification on its own, but it relies on the RSS
classification.

4.2.2 Context Definition
As said above, the notion of context is fundamental in order to deliver a feasible
substitution service. In fact, two people could use the same jargon but meaning
different things.

 For example, let’s consider the question "Who collaborates with the knowledge
media institute?” and assume that the system is not able to solve the linguistic
ambiguity of the word "collaborate". The first time, some help from the user is
needed, who selects "has-affiliation-to-unit" from a list of possible relations in the
ontology. A mapping is therefore created between "collaborate” and "has-affiliation-
to-unit", so that the next time the learning mechanism is called it will be able to
recognize this specific user jargon.

Let's imagine now a professor, who asks the system the same question “Who
collaborates with the knowledge media institute?”, but is referring to other research

2 A version space is an inductive learning technique proposed by Mitchell in order to represent

the consistency of a set of hypothesis with a target concept.

554 V. Lopez, M. Pasin, and E. Motta

Fig. 4. The learning mechanism architecture

labs or academic units involved with the knowledge media institute. In fact, when
asked to choose from the list of possible ontology relations, he/she will possibly enter
“works-in-the-same-project”.

The problem, so, is to maintain the two mappings separated while still providing
some kind of generalization. This is achieved through the definition of the question's
context as determined by its coordinates in the ontology. In fact, since the referring
(and pluggable) ontology is our universe of discourse, the context must be found
within this universe. In particular, since we are dealing with triples, and in the triple
what we learn is usually the relation (that is, the middle item), the context is delimited
by the two arguments of the triple. In the ontology, these are classes or instances,
connected by the relation.

Therefore, in the question "Who collaborates with the knowledge media institute?"
the context of the mapping from " collaborates " to " has-affiliation-to-unit " is given
by the two arguments "person" (in the ontology “who” is always translated into
“person” or “organization”) and " knowledge media institute ". What is stored in the
database, for future reuse, is the new word (which is also the key field in order to
access the lexicon during the matching method), its mapping in the ontology, the two
context-arguments, the name of the ontology and the user details.

4.2.3 Context Generalization
Of course, this kind of recorded context is quite specific and does not let other
questions benefit from the same learned mapping. For example, if afterwards we

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 555

asked "Who collaborates with the Edinburgh department of informatics?" we would
not get an appropriate matching, even if the mapping made sense also in this case.

In order to generalize these results the strategy adopted is to record the most
generic classes in the ontology which corresponds to the two triple's arguments, and,
at the same time, can handle the same relation. Namely, in our case, we would store
the concepts "people" and "organization-unit". This is achieved through a
backtracking algorithm in the Learning Mechanism, that takes the relation, identifies
its type (the type already corresponds to the highest possible class of one argument,
by definition) and goes through all the connected superclasses of the other argument
while checking if they can handle that same relation, with the given type. Thus, since
only the highest classes of an ontology’s branch are kept, all the questions similar to
the ones we have seen will fall within the same set, because their arguments are
subclasses or instances of the same concepts.

If we go back to the first example presented (“Who collaborates with the
knowledge media institute?”), we can see that the difference in meaning between the
two interpretations <collaborate> →<has-affiliation-to-unit> and <collaborate>→
<works-in-the-same-project> is preserved, because the two mappings entail two
different contexts. Namely, in the first case, the context is given by <people> and
<organization-unit>, while in the second case the context will be <organization> and
<organization-unit>. Any other matching could not mistake the two, since what is
learned is abstract but still specific enough to rule out the different cases.

4.2.4 User Communities
Another important feature of the learning mechanism is its support for a community
of users. As said above, the user details are maintained within the version space and
can be considered when interpreting a query. AquaLog allows the user to enter his/her
personal information and thus to log in and start a session where all the actions
performed on the learned lexicon table are also strictly connected to his/her profile.
For example, during a specific user-session it is possible to delete some previous
recorded mappings, action that is normally not permitted to the generic user. This
latter has in fact the roughest access to the learned material: having no constraints on
the user field, the database query will return many more mappings and, quite likely,
also meanings that are not desired.

Current work on the learning mechanism is pretty much concentrated on the
augmentation of the user-profile's details. In fact, through a specific auxiliary
ontology that describes a series of user's profiles, it is possible to infer connections
between the type of mapping and the type of user. Namely, it will be possible to
correlate a particular jargon to a set of users. Moreover, through an intelligent
reasoning service, this correlation will become dynamic, being continually extended
or diminished consistently with the relations between user's choices and user's
information. For example, if the system detects that a large number of registered
users, all characterized by the fact of being PhD students, keep employing the same
jargon, it could extend the same mappings to all the other registered PhD students.

556 V. Lopez, M. Pasin, and E. Motta

5 Integration with Web Services

As we said before, every item in the onto-triple is an entry point to the knowledge
base or to the ontology. Therefore, items are clickable and the user can get more
information about them. Optionally, AquaLog can be configured to use Semantic
Web Services in order to get more information about a particular item (i.e. instance or
concept), when required. Here AquaLog uses the same mechanism used by Magpie
[14], accessing services published against the same ontology and KB.

6 Evaluation Scenario

AquaLog allows a user who has a question in mind and knows something about the
domain to query the semantic markup viewed as a knowledge base. The aim is to
provide a system which does not require users to learn specialized vocabularies, or to
know the structure of the knowledge base. However, as pointed in [11], although they
have to have some idea of the contents of the domain they may have some
misconceptions. Therefore some process of familiarization is normally required.

A full evaluation of AquaLog requires both an evaluation of its query answering
ability as well an evaluation of the overall user experience. Moreover, because one of
our key aims is to make AquaLog an interface for the semantic web, the portability
across ontologies will also have to be evaluated formally.

For the first version of AquaLog [15] we performed an initial study, whose aim
was to assess to what extent the AquaLog application built using AquaLog with the
AKT ontology and the KMi knowledge base satisfied user expectations about the
range of questions the system should be able to answer. A second aim of the
experiment was also to provide information about the nature of the possible
extensions needed to the ontology and the linguistic components – i.e., we not only
wanted to assess the current coverage of the system but also get some data about the
complexity of the possible changes required to generate the next version of the
system.

Thus, we asked 10 members of KMi, none of whom had been involved in the
AquaLog project, to generate questions for the system. Because one of the aims of the
experiment was to measure the linguistic coverage of the system with respect to user
needs, we did not give them much information about the linguistic ability of the
system.

We collected in total 76 different questions, 37 of which were handled correctly by
AquaLog, i.e., 48.68% of the total. This was a pretty good result, considering that no
linguistic restrictions were imposed on the questions.

As pointed in [27] it is very difficult to devise a sublanguage which is sufficiently
expressive, yet avoids ambiguity and seems reasonable natural. Furthermore the
limitations on linguistic coverage will not be obvious for the user and as a result,
independently of whether a particular set of queries is answered or not, the system
becomes unusable. Therefore, the conclusion of this previous study was that it was

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 557

absolutely crucial to improve the linguistic coverage of the system, which accounted
for 69% of the failures.

For the current version of AquaLog, the linguistic coverage (and therefore data
model and similarity services) has been extended considerably. At the same time
AquaLog can now also deal with the ambiguity problems, derived from the use of
more extensive grammars.

However, in this previous study we also identified failures due to a lack of services
defined over ontologies (accounted for 20.5% of the errors). For instance, one query
asked about “the top researchers”, which requires a mechanism for ranking
researchers in the lab - people could be ranked according to citation impact, formal
status in the department, etc. In the context of the semantic web, we believe that these
failures are less to do with shortcomings of the ontology than with the lack of
appropriate services, defined over the ontology.

No work has been done yet in relation to the service failures, which remains a
future line of work for future versions of the system.

In order to evaluate the portability of the system we interfaced AquaLog to the
Wine Ontology [16], an ontology used to illustrate the specification of the OWL W3C
recommendation. The experiment confirmed the thesis that AquaLog is ontology
independent, as we did not notice any hitch in the behaviour of this configuration
compared to the others built previously. However, this ontology highlighted some
AquaLog limitations, which must be addressed in the near future. For instance, a
direct question like “which wines are recommended with cakes” will fail because
there is not a direct relation between wines and desserts, as there is a mediating
concept called “mealcourse”. However, the knowledge is in the ontology, and the
question can be addressed if reformulated as “what wines are recommended for
dessert courses based on cakes?”.

The wine ontology does not have much information instantiated, and as a result no
answer can be found for most of the questions. However, it is a good test case for the
Linguistic and Similarity Components responsible for creating the ontology
compliance triple (from which an answer can be inferred in a relatively easy way).

7 Related Work

7.1 Close-Domain Natural Language nterfaces

This scenario is of course very similar to asking natural language queries to databases
(NLDB), which has long been an area of research in the artificial intelligence and
database communities [17, 18, 19, 20, 21], even if as [22, 23] say “in the past decade
has somewhat gone out of fashion”. The use of natural language to access relational
databases can be traced back from the late sixties and early seventies. In [22] a
detailed overview of the state of the art for these systems can be found. The main
difference between AquaLog and the latest generation of NLDB systems [24] is that
AquaLog uses an intermediate representation throughout the entire process, from the
representation of the user’s query (NL front end) to the representation of an ontology
compliant triple (through the use of similarity services), from which an answer can be

I

558 V. Lopez, M. Pasin, and E. Motta

directly inferred. It takes advantage of the structure of ontologies in a way that makes
the entire process highly portable.

PRECISE [25] maps questions to the corresponding SQL query, by identifying
classes of questions that are easy to understand in a well defined sense: the paper
defines a formal notion of semantically tractable questions. Questions are sets of
attribute/value pairs and a relation token corresponds to either an attribute token or a
value token. In PRECISE the problem of finding a mapping from the tokenization to
the database requires that all tokens must be distinct; questions with unknown words
are not semantically tractable and cannot be handled. In contrast with PRECISE,
AquaLog employs similarity services to interpret the user query by means of the
vocabulary in the ontology. As a consequence, AquaLog is able to reason about the
ontology structure in order to make sense of unknown relations or classes which
appear not to have any match in the KB or ontology.

7.2 Open-Domain QA Systems

Most current work on question answering is somewhat different in nature from
AquaLog as it concerns open-domain systems. However, there are linguistic problems
common in most kinds of natural language understanding systems.

Most text based QA applications typically involve two steps [26]: 1. Identifying
the semantic type of the entity sought by the question (a date, a person and so on); 2.
Determining additional constraints on the answer entity, i.e. identifying key words or
syntactic or semantic relations to be used in matching candidate answers. Various
systems have, therefore built hierarchies of question types based on the types of
answers sought [27, 28, 29, 30].

As pointed by R. Srihari et al. in [28]: (i) IE can provide solid support for QA; (ii)
low-level IE like Named Entity (NE) tagging is often a necessary component (an
analysis showed that over 80% out of 200 questions asked for an NE as a response);
(iii) a robust natural language shallow parser provides a structural basis for handling
questions; (iv) high-level domain independent IE, i.e., extraction of multiple
relationships between entities, is expected to bring about a breakthrough in QA.

AquaLog also subscribes to point (iii), however the main two differences with
open-domain systems are: (1) it is not necessary to build hierarchies or heuristics to
recognize name entities, as all the semantic information needed is in the ontology; (2)
AquaLog has already implemented mechanisms to extract and exploit the
relationships to understand a query. Nevertheless, the goal of the main similarity
service in AquaLog, the RSS, is to map the relationships in the linguistic triple into an
ontology-compliant-triple. As described in [28] NE is necessary but not complete in
answering questions because NE by nature only extracts isolated individual entities
from text, therefore methods like “the nearest NE to the queries key words” are used.

Both AquaLog and open-domain systems attempt to find synonyms plus their
morphological variants to the terms or key words. Also in both cases, at times, the
rules leave ambiguity unresolved and produce non-deterministic output for the focus
of the question or asking point (for instance, who can be related to a person or to an
organization).

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 559

As in open-domain systems, AquaLog also automatically classifies the question
beforehand. The main difference is that AquaLog classifies the question based on the
kind of triple needed, while most of the open-domain QA systems classify questions
according to their answer target [30] (person, location, date, ..). The triple contains
information not only about the answer expected or focus, which is what we call the
generic term of the triple, but also about the relationships between the generic term
and the other terms participating in the question (each relationship is represented in a
different triple). Different queries may belong to the same triple category. An efficient
system should therefore group together equivalent questions types.

The best result of the TREC9 [31] were obtained by the system FALCON
described in Harabaigiu et al. [32]. When the question concept indicating the answer
type is identified, it is mapped into an answer taxonomy. The top categories are
connected to several word classes from WordNet. The example shown in [32]
identifies the expected answer type of the question “what do penguins eat?” to be
food since it is the most widely used concept in the glosses of the subhierarchy of the
noun synset {eating, feeding}. Also, FALCON gives a cached answer if the similar
question has already been asked before; a similarity measure is calculated to see if the
given question is a reformulation of a previous one. A similar approach is adopted by
the learning mechanism in AquaLog, where the similarity is given by the context
stored in the triple.

7.3 Open-Domain QA Systems Using Triple Representation

The START [33] system goal is also to extract answers from text. AquaLog relational
data model (triple-based) is somehow similar to the approach adopted by START,
called “object-property-value”. The difference is that instead of properties we are
looking for relations between terms, or between a term and its value. Using an
example presented in [33]: “What languages are spoken in Guernsey?”, for START
the property is “languages” between the Object “Guernsey” and the value “French”;
for AquaLog it will be translated into a relation “are spoken” between a term
“language” and a location “Guernsey”.

The system described in Litkowski et al. [34], called DIMAP, extracts “semantic
relation triples” from a document. The semantic relation triple described consists of a
discourse entity, a semantic relation that characterizes the entity’s role in the sentence
and a governing word (generally the word in the sentence that the discourse entity
stood in relation to). The semantic relation and the governing words were not
identified for all discourse entities, but a record for each entity was still added to the
database sentence (on average 9.8 triples per sentence). The same analysis is
performed to create a set of records for each question (in average 3.3 triples per
sentence), in which one of the semantic relation triples contained an unbound variable
as a discourse entity, corresponding to the type of question. DIMAP-QA converts the
document into triples and AquaLog uses the ontology, which it may be seen as a
collection of triples. One of the current AquaLog limitations is that the number of

560 V. Lopez, M. Pasin, and E. Motta

triples is fixed for each query category, although, the AquaLog triples change during
its life cycle. However, the performance is still high as most of questions can be
translated into one or two triples.

7.4 Ontologies in Question Answering

We have already mentioned that many systems simply use an ontology as a
mechanism to support query expansion in information retrieval. In contrast with
these systems AquaLog is interested in providing answers derived from semantic
annotations to queries expressed in NL. In the paper by R. Basili [35] the possibility
of building an ontology-based question answering system in the context of the
semantic web is discussed. Open domain QA systems do not rely on specialized
conceptual knowledge as they use a mixture of statistical techniques and shallow
linguistic analysis. Ontological QA systems propose to attack the problem by means
of an internal unambiguous knowledge representation. Their approach is being
investigated in the context of EU project MOSES, with the explicit objective
of developing an ontology-based methodology to search, create, maintain and
adapt semantically structured Web contents according to the vision of semantic
web. The approach and scenario has many similarities with AquaLog. However,
AquaLog is implemented on-line and has a wider linguistic coverage. The query
classification is guided by the equivalent semantic representations or triples. The
mapping process is converting the elements of the triple into entry-points to the
ontology and KB.

8 Conclusion

In this paper we have described the AquaLog ontology-driven query answering
system in the context of the Semantic Web scenario. AquaLog presents an elegant
solution in which different strategies are combined together to make sense of an NL
query with respect to the universe of discourse covered by the ontology. Its ontology
portability capabilities make AquaLog a suitable NL front-end for the Semantic
Web.

Acknowledgements

This work was partially supported by the Advanced Knowledge Technologies
(AKT), which is sponsored by the UK Engineering and Physical Sciences Research
Council and by the Dot.Kom project under grant IST-2001-34038. The authors
would like to thank Yuangui Lei, Anne de Roeck, Davide Guidi, Dnyanesh
Rajpathak, Martin Dzbor, John Domingue, Victoria Uren and Kalina Bontcheva for
useful AquaLog related input and those members of the lab who took part in the
evaluation.

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 561

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 284 (5)
(2001) 33-43

2. Mc Guinness, D.: Question Answering on the Semantic Web. IEEE Intelligent Systems,
19 (1) (2004) 82-85

3. Clark, P., Thompson, J., Porter., B.: A Knowledge-Based Approach to Question-
Answering. In the AAAI Fall Symposium on Question-Answering Systems, CA: AAAI.
(1999) 43-51

4. Cohen, W., W., Ravikumar, P., Fienberg, S., E.: A Comparison of String Distance Metrics
for Name-Matching Tasks. In IIWeb Workshop, (2003), http://www-2.cs.cmu.edu/
~wcohen/postscript/ijcai-ws-2003.pdf

5. Pasca, M., Harabagiu, S.: The Informative Role of WordNet in Open-Domain Question
Answering. In 2nd Meeting of the North American Chapter of the Association for
Computational Linguistics (Naacl) (2001)

6. JWNL (Java WordNet library) http://sourceforge.net/projects/jwordnet
7. RDF: http://www.w3.org/RDF/
8. Mc Guinness, D., van Harmelen, F.: OWL Web Ontology Language Overview. W3C

Recommendation 10 (2004) http://www.w3.org/TR/owl-features/
9. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (ACL'02), Philadelphia (2002)

10. Tablan, V., Maynard, D., Bontcheva, K.: GATE - A Concise User Guide. University of
Sheffield, UK. http://gate.ac.uk/

11. Copestake, A., Jones, K., S.: Natural language interfaces to databases. Knowledge
Engineering Review, 5 (4) (1990) 225-249

12. Fellbaum, C. (Ed.), WordNet, An Electronic Lexical Database. Bradford Books, May,
(1998)

13. Mitchell, T. M.: Machine learning. McGraw-Hill, New York (1997)
14. Dzbor, M., Domingue, J., Motta, E.: Magpie – Towards a Semantic Web Browser. In

Proceedings of the 2nd International Semantic Web Conference (ISWC2003), Lecture
Notes in Computer Science, 2870/2003, Springer-Verlag (2003)

15. Lopez, V., Motta, E.: Ontology Driven Question Answering in AquaLog. In Proceedings
of the 9th International Conference on Applications of Natural Language to Information
Systems, Manchester, England (2004)

16. W3C, OWL Web Ontology Language Guide: http://www.w3.org/TR/2003/CR-owl-guide-
0030818/

17. Burger, J., Cardie, C., Chaudhri, V., et al.: Tasks and Program Structures to Roadmap
Research in Question & Answering (Q&A). NIST Technical Report, 2001
http://www.ai.mit.edu/people/jimmylin/%0Apapers/Burger00-Roadmap.pdf

18. Kaplan, J.: Designing a portable natural language database query system. ACM
Transactions on Database Systems, 9 (1) (1984) 1-19

19. Androutsopoulos, I., Ritchie, G.D., and Thanisch, P.: MASQUE/SQL - An Efficient and
Portable Natural Language Query Interface for Relational Databases. In Chung, P.W.
Lovegrove, G. and Ali, M. (Eds.), Proceedings of the 6th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
Edinburgh, U.K., Gordon and Breach Publishers (1993) 327-330

562 V. Lopez, M. Pasin, and E. Motta

20. Chu-Carroll, J., Ferrucci, D., Prager, J., Welty, C.: Hybridization in Question Answering
Systems. In Maybury, M. (Ed.), New Directions in Question Answering, AAAI Press,
(2003)

21. Jung, H., Geunbae Lee, G.: Multilingual Question Answering with High Portability on
Relational Databases. IEICE transactions on information and systems, E86-D (2) (2003)
306-315

22. Androutsopoulos, I., Ritchie, G.D., Thanisch P.: Natural Language Interfaces to Databases
- An Introduction. Natural Language Engineering, 1 (1) (1995) 29-81

23. Hunter, A.: Natural language database interfaces. Knowledge Management, (2000)
24. De Roeck, A., N., Fox, C., J., Lowden, B., G., T., Turner, R., Walls, B.: A Natural

Language System Based on Formal Semantics. In Proceedings of the International
Conference on Current Issues in Computational Linguistics, Pengang, Malaysia, (1991)

25. Popescu, A., M., Etzioni, O., Kautz, H., A.: Towards a theory of natural language
interfaces to databases. In Proceedings of the International Conference on Intelligent User
Interfaces, Miami, FL, USA, Jan. 12-15 (2003) 149-157

26. Hirschman, L., Gaizauskas, R.: Natural Language question answering: the view from here.
Natural Language Engineering, Special Issue on Question Answering, 7 (4) (2001) 275-
300

27. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Goodrum, R., Girju, R., Rus, V.:
LASSO: A Tool for Surfing the Answer Net, in Proceedings of the Text Retrieval
Conference (TREC-8), Nov. (1999)

28. Srihari, K., Li, W., Li, X.: Information Extraction Supported Question- Answering, In T.
Strzalkowski & S. Harabagiu (Eds.), in Advances in Open- Domain Question Answering.
Kluwer Academic Publishers (2004)

29. Hovy, E.H., Gerber, L., Hermjakob, U., Junk, M., Lin, C.-Y.: Question Answering in
Webclopedia. In Proceedings of the TREC-9 Conference. NIST, Gaithersburg, MD (2000)

30. Wu, M., Zheng, X., Duan, M., Liu, T., Strzalkowski, T.: Question Answering by Pattern
Matching, Web-Proofing, Semantic Form Proofing. NIST Special Publication: The Twelfth
Text REtrieval Conference (TREC) (2003) 500-255

31. De Boni, M.: TREC 9 QA track overview.
32. Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R., Girju,

R., Rus, V., Morarescu, P.: Falcon - Boosting Knowledge for Answer Engines. In
Proceedings of the 9th Text Retrieval Conference (Trec-9), Gaithersburg, Maryland, Nov.
(2000)

33. Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J., Marton, G., McFarland A. J.,
Temelkuran, B.: Omnibase: Uniform Access to Heterogeneous Data for Question
Answering. In Proceedings of the 7th International Workshop on Applications of Natural
Language to Information Systems (NLDB) (2002)

34. Litkowski, K. C. Syntactic Clues and Lexical Resources in Question-Answering. In
Voorhees, E. M. and Harman, D. K. (Eds) Information Technology: The Ninth Text
REtrieval Conferenence (TREC-9), NIST Special Publication 500-249. Gaithersburg, MD:
National Institute of Standards and Technology (2001) 157-66

35. Basili, R., Hansen, D., H., Paggio, P., Pazienza M., T., Zanzotto F., M. Ontological
resources and question answering Workshop on Pragmatics of Question Answering, held
jointly with NAACL 2004 Boston, Massachusetts, May (2004)

